

Name of Course	: CBCS B.Sc. (H) Mathematics
Unique Paper Code	: 32351101
Name of Paper	: BMATH101-Calculus
Semester	: I
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Sketch the graph of the function

$$f(x) = 3x^4 - 4x^3$$

by finding the intercepts, critical numbers, intervals of increase/decrease, relative extrema, second-order critical numbers, concavity and inflection points.

It is projected that t years from now, the population of a certain country will be

$$P(t) = 50 e^{0.02t} \text{ million.}$$

- (i) At what rate the population is changing with respect to time 10 years from now?
- (ii) At what percentage rate will the population be changing with respect to time t years from now?

Find the n th order differential coefficient of

$$y = \sin x \log(ax + b).$$

(7.75 + 6 + 5)

2. Convert the polar equation $r = 4 \cos \theta + 6 \sin \theta$ to rectangular coordinates. Show that it represents a circle. Find the centre and radius of that circle.

Identify and sketch the following conic by removing the xy -term

$$8x^2 - 12xy + 17y^2 = 20.$$

Find the equation of hyperbola with vertices $(0, \pm 3)$ and asymptotes $y = \pm x$.

(6 + 8.75 + 4)

3. Let R be the region bounded in the first quadrant by the curves $y = x^2$, the y -axis and the line $y = 1$. Determine the volume of the solid generated when R is revolved about the line $x = 2$ using cylindrical shell method and washer method.

Find the area of surface generated by the revolving the curves

- (i) $y = \sqrt{4 - x^2}$, $-1 \leq x \leq 1$ about x -axis,
- (ii) $x = y^3$, $0 \leq y \leq 1$ about the y -axis.

(10.75 + 8)

4. Find the vector limit

$$\lim_{t \rightarrow 0^+} \left[\left(1 + \frac{1}{t}\right)^t \mathbf{i} - \left(\frac{\sin t}{t}\right) \mathbf{j} - \left(\frac{e^{-t}}{1-t}\right) \mathbf{k} \right].$$

A projectile is fired from ground level with muzzle speed 50 ft/s at an angle of elevation of $\alpha = 30^\circ$. What is the maximum height reached by the projectile? What is the time of flight and the range?

A particle moves along a path given in parametric form where $r(t) = 3 + 2 \sin t$ and $\theta(t) = t^3$. Find the velocity and acceleration of the particle in terms of the unit polar vectors \mathbf{u}_r and \mathbf{u}_θ .

Find unit tangent $\mathbf{T}(t)$ and unit normal $\mathbf{N}(t)$ of the curve given by $r(t) = (t^2 + 1) \mathbf{i} + t \mathbf{j}$ at $t = 1$.

(3.75 + 5 + 5 + 5)

5. Let

$$L = \lim_{x \rightarrow \pi/2} (\sin x)^{\tan^2 x}$$

and

$$M = \lim_{x \rightarrow (\pi/2)^-} (\tan x)^{\sin(2x)}.$$

Find the values of L and M and show that $eL^2 = M$.

Prove that $\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1})$, $x \geq 1$.

Find the centre, vertices, foci and ends of minor axis of the ellipse

$$3x^2 + 4y^2 - 30x - 8y + 67 = 0.$$

(7.75 + 6 + 5)

6. If $y = \log(x + \sqrt{x^2 + 1})$, prove that

$$(1 + x^2)y_{n+2} + (2n + 1)xy_{n+1} + n^2y_n = 0.$$

The position of an object moving in space is given by

$$R(t) = (e^{-t} \cos t) \mathbf{i} + (e^{-t} \sin t) \mathbf{j} + e^{-t} \mathbf{k}.$$

Find the velocity, speed and acceleration of the object at arbitrary time t and at $t = 0$.

Also, determine the curvature of the trajectory at arbitrary time t and at $t = 0$.

Prove that

$$\int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx.$$

Hence, evaluate $\int x^2 e^{3x} dx$.

(6 + 6 + 6.75)

Name of Course	: CBCS B.Sc. (H) Mathematics
Unique Paper Code	: 32351102
Name of Paper	: BMATH102-Algebra
Semester	: I
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

- Find all the rational roots of the equation $224y^3 - 344y^2 + 22y - 15 = 0$ and also solve the equation $16y^4 - 96y^3 + 56y^2 + 264y - 135 = 0$ given that the roots form an arithmetical progression.
- Draw a rough sketch of the region corresponding to the inequality $\frac{1}{\sqrt{2}} < |z - 1 - i| < \sqrt{2}$. Use De Movire's theorem to find the square root of $-3 + 4i$. Find the extended argument $\text{Arg } z$ of the complex number $z = (-\sqrt{3} - i)(1 + i)$.
- Let $A = \{1,2,3,4,5,6,7\}$. Define a relation R_1 on the set A which is an equivalence relation. Define a relation R_2 on the set A which is not an equivalence relation. Let a be an integer, prove that there exists an integer k such that $a^2 = 5k$ or $a^2 = 5k + 1$. Evaluate $(5.6+8.11+19.23)(\text{mod } 9)$.
- Show that the function $f: \left(\frac{2}{5}, \infty\right) \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \left(\frac{2}{5}, \infty\right)$ defined by $f(x) = \log_5(5x - 2)$ and $g(x) = \frac{5^x+2}{5}$ are the inverse of each other. Prove that the interval $(3, 7)$ and $(1, \infty)$ have the same cardinality. Show that 314 and 159 are relatively prime integers.
- Describe the solutions of the following system in parametric vector form. Give a geometrical description of the solution set.

$$\begin{aligned} 4x_1 - 2x_2 + 6x_3 &= 8 \\ x_1 + x_2 - 3x_3 &= -1 \\ 15x_1 - 3x_2 + 9x_3 &= 21 \end{aligned}$$

Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a linear transformation which first reflects points through the line $x_1 = x_2$ and then rotates points (about the origin) through $\pi/4$ radians. Find the standard matrix of T .

- Let $A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 1 & 2 \\ -1 & 2 & 2 \end{bmatrix}$. Find a basis for
 - Row Space of A .
 - Null Space of A .

Also find Rank A and Nullity A .